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Introduction 
 
Biodegradable polymers are widely used for drug delivery due to their versatility and 
non-toxic properties. Their applications range from microparticles for drug release to 
drug-loaded stents and grafts. For example, the biodegradable polymer poly(D,L,-
Lactide-co-Glycolide) (PLG) is used in the delivery of osteotropic factors promoting 
bone regrowth, since the polymer provides a scaffold to support the bone as well as 
pores to store and then release the factors1. As the polymer degrades the osteotropic 
factors release more quickly and the bone regrows to fill the area where the scaffold 
had been providing support. This system improves upon previous delivery systems as it 
prevents the growth factors from dispersing shortly after implantation in vivo1. The 
porosity of PLG also serves as a scaffold for cell proliferation with a sufficiently high 
diffusion rate for the transportation of nutrients in and 
wastes out1. Figure 1 shows the pores formed in PLG 
over time as the polymer degrades. These pores 
increase the diffusivity of the osteotropic factors out and 
allows the cells to migrate in. The key to the success of 
this treatment is the controlled release of the 
osteotropic factors. A mathematical model for the 
release of the osteotropic factors would allow for 
greater control over their release. This provides an 
example for how a mathematical model for diffusion 
through a biodegradable polymer will be of great 
interest.  
 
In this case, as in many others, the rate of drug release 
and the amount of total drug release are vital in patient 
treatment, making the accuracy of mathematical 
models for drug release critical. An accurate model 
allows exact release rates over time to be determined 
before administration for a variety of polymers and 
drugs, allowing for the prediction of clinical results 
without needing to perform trial and error experiments. 
Drug release rates for drug-loaded polymers are 
dependent on the rate of diffusion of the drug through 
the polymer. The diffusivity for the drug through these 
polymers is often treated as constant; however, 
biodegradable polymers are unique in that diffusivity 
actually increases with time. As biodegradable 
polymers degrade the pores within their matrix grow 
in size and number. This opens up paths for the 
diffusion of drugs through the matrix leading to an 
increase in the diffusivity constant. Treating the 
diffusivity as constant is an approximation that does 

Figure	  1.	  Pores	  in	  the	  PLG	  
scaffold	  increase	  in	  size	  as	  the	  
polymer	  degrades.	  This	  allows	  
cells	  to	  migrate	  into	  the	  scaffold	  
and	  the	  osteotropic	  factors	  to	  
diffuse	  out1.	  
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not take into account the effect of the degradation of the polymer on diffusion rate. 
However, in order to take into account all of the processes that affect diffusion including 
polymer swelling, osmotic effects, adsorption, and drug dissolution the mathematical 
model would have to be extremely complicated2. In order to simplify the model and 
make it usable, only the forces that play the largest role in the drug release rate will be 
accounted for in the mathematical model that we will be working with. 
 
In order to develop a model and test its efficacy, we will be using the diffusion of human 
growth hormone (hGH) in PLG for our constants. PLG was chosen as it is both 
biodegradable and nontoxic, making it a good example of a polymer used for biomedical 
applications (Fredenberg). hGH was chosen as its diffusion through PLG has been well 
studied and experimentally modeled, allowing us to compare our mathematical model 
with the experimentally obtained results (Fredenberg). For these reasons a 
mathematical model for the diffusion of hGH through PLG is relevant to the 
bioengineering community. Figure 2 shows the simplified model we developed for 
diffusion of hGH through PLG. The boundaries are defined on the x-axis at 0 and L. The 
growth hormone is shown as a red pentagram, initially uniform throughout the polymer. 
The PLG pores are initially small and diffusion is slow. Over time the pore size increase 
and the rate of diffusion is shown to increase accordingly. In order to be able to 
compare between the models that do not take degradation into account and the model 
that we have developed, we will be solving both the simple and complex models. 
 
 
 

 
 
 
 
 
 
 

 

Figure 2. A simplified model demonstrating the diffusion of hGH through PLG. Over time the pore 
size increases allowing the diffusion rate of hGH to increase. The x-axis values for the boundaries 
are defined. The magnitude of diffusion is represented by the arrow length attached to the growth 
hormones. 
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Mathematical Model 
 

Model Set-Up 
 
Throughout our description of our mathematical model we will be using the following 
terminology. In order to make our model specific to the diffusion of human growth 
hormone in PLG, we obtained the following values for our constants from literature 
resources2,3,4. 
 

0

8 2
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1

( , )
30 /

5
( )

4.32 10 /

0.044

C x t concentration profile of hGH
C initial hGH concentration mg mL
L length of thin film mm
D t diffusivity of hGH in PLG
D initial diffusivity of hGH m day
k PLGdegradation rate day

−

−

=
= =
= =

=
= = ×

= =

 

 
We will be modeling the diffusion of the human growth hormone through the PLG by 
treating the PLG as a thin film with 1-dimensional diffusion. There is no generation 
factor since there is no synthesis or break down of the hormone. We define the top of 
the film as x = 0 and the bottom of the film as x = L.  This gives allows us to model the 
diffusion with the following equation. 

 
 

From literature we found that diffusion in a biodegradable polymer is exponentially 
dependent on time and polymer degradation rate over the time scale with which we are 
concerned, giving us the following equation2. 

 
 

Initially, the hGH concentration is uniformly distributed throughout the polymer, making it 
a constant value before diffusion begins. This corresponds to the following initial 
condition. 
 

0: ( ,0)IC C x C=  
 

Because the hGH is assumed to instantly diffuse away from the boundaries without any 
adsorption, the concentration of hGH would then be 0 mg/mL at the boundaries. This 
leads to the following two boundary conditions. 
 

∂C
∂t

= D(t) ∂
2C
∂x2

D(t) = D0e
kt
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: (0, ) ( , ) 0BCs C t C L t= =  
 
This defines the model, which we will solve and analyze through the rest of the paper. In 
order to provide a comparison between the less accurate time-independent diffusivity 
model and the more complex time-dependent diffusivity model, we will solve and 
analyze both models. 
 

Assumptions 
 
In this model we made the assumptions outlined below: 

• hGH is dispersed uniformly throughout the polymer. 
• The polymer membrane is thin enough to assume that diffusion only occurs in 

one dimension; i.e. the polymer is assumed to be infinitely long is dimensions x 
and z. 

• The polymer degrades at a constant rate uniformly over time and throughout the 
bulk of the polymer. 

• hGH diffuses out of the surface of the polymer at the same rate as it diffuses to 
the surface; i.e. there is no adsorption and the drug diffuses instantly away from 
the boundary. 

• The diffusion of hGH is independent of the diffusion of water and the side 
products from the polymer degradation. 

• The diffusion rate increases exponentially over the time scale we are concerned 
with.  

 

Analytical Solution 
Diffusion Equation Solution 
 
We began with our defined equation for 1-D diffusion with time dependent diffusivity. 
This gave us the following partial differential equation. 
 
 
 
 
Again, we had the following initial conditions and boundary conditions. 
 

0: ( ,0)IC C x C=  : (0, ) ( , ) 0BCs C t C L t= =  
 

With the problem properly setup, we then used separation of variables to solve the 
partial differential equation. By dividing the concentration profile into a function of x and 
a function of t, we were able to plug Equation (2) into Equation (1) to form two separate 
equations that could now be solved. 
 

∂C
∂t

= D(t) ∂
2C
∂x2

,where D(t) = D0e
kt (1)
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( , ) ( ) ( ) (2)C x t x G t=Φ  
 

2
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λΦΦ = = −  
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2

2 ( ) 0 (3), ( ) ( ) (4)d dGx D t G t
dtdx

λ λΦ + Φ = = −  

 
Here is where our model deviated from the previous models where diffusivity is treated 
as constant over time. Solving Equation (4) gave an exponential to an exponential, as 
seen below. Plugging in the initial conditions also allowed us to find the integration 
constant G0. 
 

0

0( ) (5)
ktD
e

kG t G e
λ

−
=  

 
0

0 0(0)
D
kG G e C

λ
−

= =  
 

0

0 0 (6)
D
kG C e

λ

=  
 
Then we needed to solve Equation (3) to find the value of λ. This was done using the 
three different possible values of λ. 
 

0 trivial solutionλ < →  
 

0 trivial solutionλ = →  
 

0 ( ) cos( ) sin( ) (7)x A x B xλ λ λ> → Φ = +  
 

We only found a non-trivial solution when λ > 0, so the next step was to plug in the 
boundary conditions. 
 

(0) 0AΦ = =  
 

( ) sin( ) 0L B LλΦ = =  
 

Because A = 0, B ≠ 0 otherwise we would have had another trivial solution. This meant 
that the sine term must be equal to zero. Using this, we could then solve for λ. 
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sin( ) 0Lλ =  

 

, 1,2,3..n n
L
πλ = =  

 
Plugging these results back into Equation (7) and then Equation (2) gave the following: 
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We then need to solve for the constant Bn, which included the integration constant G0 
from the G(t) function in it. 
 

0
0
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L
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L L
π= ∫  
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π
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π
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02
(1 cos( )) (9)n

G
B n

n
π

π
= −  

 
Plugging Equations (9) and (6) into Equation (8) gave us our final analytical solution: 
 

C(x,t) =
2C0e

nπ
L

!

"
#

$

%
&
2

D0

k

nπ
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L
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k
ekt
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Graphical Representation 
 
After finding our analytical solution, we used MATLAB to plot a 3-dimensional graph of 
our results. We plotted from n=1 to n=42 to give us a close approximation to the 
analytical solution, though the oscillations can still be seen at the initial time. As can be 
seen from the plot below (Figure 3), initially the hormone is uniformly dispersed 
throughout the polymer. Over time it quickly diffuses through the boundaries, eventually 
reaching a concentration of 0 mg/mL over the entire length of the polymer. This is what 
we would expect to see for a protein diffusing out of a polymer with no synthesis or 
insulation. 
 
 

 Figure	  3.	  A	  surf	  plot	  of	  the	  analytical	  solution	  with	  42	  terms.	  The	  plot	  shows	  a	  uniform	  distribution	  of	  the	  
hormone	  at	  the	  initial	  condition,	  which	  quickly	  diffuses	  out	  of	  the	  value-‐value	  boundaries.	  

MATLAB Model 
Complex Time-Dependent Diffusivity Model 
 
In order to confirm that our analytical solution was correctly solved and plotted, we used 
the MATLAB pdepe function to provide a surf plot of the exact solution. In this case, the 
graph will no longer be an approximation. The following plot (Figure 4) shows that our 
analytical solution provided a close approximation to the exact solution. The oscillations 
are no longer present and the graph is smoother, but the shape of the graph and rate of 
diffusion are a close match between the graphs. Again, the uniform distribution of the 
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protein at the initial condition can be seen, followed by its diffusion out of the boundaries 
bringing the final concentration to 0 mg/mL.  
 
 

 
Figure	  4.	  A	  surf	  plot	  produced	  by	  the	  pdepe	  function	  of	  MATLAB.	  It	  provides	  an	  exact	  solution	  to	  our	  
mathematical	  model.	  The	  plot	  closely	  resembles	  our	  analytical	  solution’s	  approximation.	  Confirming	  it	  is	  
correctly	  solved.	  

Simplified Time-Independent Diffusivity Model 
 
In order to determine whether our model is a significant improvement upon previous 
models, we solved the same diffusion model, except without the polymer degradation 
taken into account. In other words, with this model it is assumed that there is no 
increase in pore size and therefore no exponential increase in diffusivity. Therefore, the 
diffusivity remains constant over time (D = D0). As a result, there is no exponential term 
in the diffusivity to account for the degradation of the polymer, and the analytical 
solution for time dependent function, G(t), becomes much simpler. It is now only an 
exponential, rather than an exponential to the exponential. Therefore, the analytical 
solution of the simplified diffusivity model is the equation shown below. 
 

00

1

2( , ) (1 cos( )) sin( ) D t

n

C nC x t n x e
n L

λππ
π

∞
−

=

= − ⋅ ⋅∑  

 
Since this solution no longer has an exponential to the exponential term, we predicted 
that the diffusion of the drug would take much longer. This makes sense intuitively, 
since without the polymer degradation the diffusivity would remain relatively slow. In 
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order to see if our prediction was correct, we used the MATLAB pdepe function again to 
visualize the slower diffusion rate. Figure 5 shows the diffusion profile of hGH through a 
non-biodegradable polymer over the same time scale as our previous plots. The initial 
condition is again the uniform distribution of hormone that we would expect. While hGH 
still diffuses out of the boundaries, the diffusion rate is much lower than with our more 
accurate model. Approximately half of the hGH has diffused out from the scaffold after 
50 days, whereas, almost all of the hGH has diffused out when the polymer degrades.  

 

 
 

Figure	  5.	  A	  surf	  plot	  made	  by	  the	  MATLAB	  pdepe	  function	  of	  the	  time-‐dependent	  diffusivity	  model.	  It	  shows	  
slower	  diffusion	  than	  the	  model	  that	  takes	  degradation	  into	  account.	  
 
From this we determined that our model was a significant improvement on time-
independent diffusivity models for the modeling of diffusion through a biodegradable 
polymer. 
 

Comparison of Models 
 
We took a slice along each surf plot by holding x constant and looking at the diffusion 
with respect to time. This allowed us to compare the effect of biodegradation on protein 
diffusion more easily. The following graphs (Figure 6) show the concentration profile 
over 50 days and 150 days respectively. 
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Figure	  6.	  Diffusion	  over	  50	  days	  and	  150	  days	  respectively,	  while	  holding	  x	  constant.	  The	  plots	  show	  more	  clearly	  
that	  the	  polymer	  degradation	  increases	  the	  diffusivity.	  	  Over	  time	  the	  effect	  of	  the	  polymer	  degradation	  grows	  
more	  pronounced.	  



	   13	  

Since	  we	  know	  from	  our	  mathematical	  model	  that	  diffusivity	  increases	  exponentially	  with	  
relation	  to	  time	  due	  to	  polymer	  degradation,	  we	  expected	  the	  difference	  in	  diffusion	  
between	  the	  two	  models	  to	  increase	  over	  time.	  Figure	  6	  clearly	  demonstrates	  the	  faster	  
diffusion	  due	  to	  polymer	  degradation,	  as	  well	  as	  confirming	  our	  prediction	  that	  the	  
exponential	  dependence	  of	  the	  diffusivity	  would	  increase	  the	  differences	  in	  the	  models	  
over	  time.	  

Conclusion	  
 

Mathematical Solution for Diffusion of hGH in Decaying Polymer Scaffold 
 
In this study we solved the model diffusion equation using two approaches; an analytical 
approximation and an exact solution. We used the separation of variable method in 
order to find the analytical solution. The resulting approximation gave us the 
concentration of the human growth hormone in terms a position-dependent sine wave 
and a time-dependent exponential term. Due to the sine wave term, the analytical 
solution yields an oscillatory profile on the graph, especially near t = 0, where the 
exponential decay term has little effect on the overall solution. Multiple iterations of the 
summation function yield a smoother approximation. However, MATLAB has limit to its 
matrix size and calculability, limiting the number of iterations we can take into account. 
In order to try achieve the closest approximation possible, we performed the maximum 
number of iterations allowed (n = 42). Although the resulting graph (Figure 3) still 
showed oscillation near the initial condition, the overall graph showed a contour we 
could expect from a diffusion system with the conditions we set in place. 
 
In order to verify our analytical solution and to obtain a more accurate surface plot, we 
used the pdepe function in MATLAB. The pdepe function yields an exact solution 
allowing us to plot a corresponding graph to the partial differential equation. As 
anticipated, the resulting 3-D graph (Figure 4) is much smoother, and the initial 
condition (C0 = 30 mg/ml between x = 0 mm and x = .5 mm) no longer has the 
oscillation approximations. By comparing this graph to the graph from the analytical 
method, we concluded that our analytical solution was correct, and that if we further 
increased the number summation terms we would have the exact same graph for both 
methods. From both graphs we observed that hGH trapped within the .5mm polymer 
scaffold initially had a uniform concentration of 30 mg/ml within the film. The hormone 
then diffused out through both boundaries of the film, as expected since there was no 
adsorption or insulation. By day 50, almost all of the hormone present in the film had 
diffused out of the polymer scaffold. This depletion time is within a reasonable range of 
previous works4 and we are able to say with confidence that our modeling equation 
appropriately represents a close approximation to the diffusion of a protein through a 
biodegradable polymer. To further substantiate our model, we compared it to a constant 
diffusivity model. 
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Comparison to Constant Diffusivity Model 
 
Our diffusion model took into account the linear decay of the polymer scaffold, which as 
we found greatly affect the diffusion of hGH. To do this we used a time-dependent 
diffusivity, instead of the more commonly used constant diffusivity. We believed that 
such modeling would provide a better representation of an actual system, since 
polymers degrade in slow, yet steady, manner. It was difficult, however, to observe the 
effect of having time-dependency in diffusivity without a comparison. 
 
To do this, we solved a similar diffusion model that uses the same constants and 
assumptions; however this equation does not take into account the time-dependent 
linear decay of the scaffold polymer. When we used MATLAB to create a surf plot of this 
simpler model, the diffusion profile appeared similar. However, the total depletion in this 
model took more than 150 days (Figure 6). This was expected, as lack of scaffold decay 
would result in a constant and low diffusivity. Without the degradation of the polymer 
scaffold, the hGH molecules would have more difficulty escaping the polymer film. 
Compared to this model, our time-dependent diffusivity model shows a rapid diffusion 
period after day 10 due to the increase in pore size in the polymer scaffold, providing 
easier diffusion route for the hGH. 
 
Although a constant diffusivity model represents a common diffusion profile, it was not a 
good representation of drug diffusion through decaying polymer scaffold. The resulting 
150 days depletion time was much longer than the experimented value. Thus, we 
concluded that our model more realistically represented the hGH diffusion through PLG 
scaffold film. 
 

Future Studies 
 
In order to simplify our mathematical model enough to be solved analytically, we initially 
made several assumptions. Some of these assumptions may not have been justified, 
and could affect the diffusion profile significantly. This could mean our model is a less 
accurate approximation.  
 
To begin with, we assumed that our diffusion was only in one dimension. In a real 
system, the film is not infinitely long, meaning that diffusion also occurs in the other 
dimensions. This added diffusion could significantly change the diffusion profile, as the 
molecules would diffuse more quickly out if they were not insulated in two dimensions. 
Furthermore, if the film were attached to a surface, the diffusion rate difference between 
the attached surface and the open surface could be significant enough to change the 
diffusion profile. That being said, accounting for these boundary condition issues would 
not be too difficult as long as the interactions between the film and the attached surface 
were well understood. 
 
Secondly, we assumed that the polymer degradation is linear, or has constant 
degradation rate. Although polymer degradation might appear linear in a short time 
frame, in an extended time frame polymer degradation is exponential. This is for the 
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same reason that the diffusivity has an exponential term; the increase in scaffold pore 
size also facilitates polymer degradation. In other words, as the polymer breaks down it 
exposes more surface area leading to further degradation. A more precise modeling of 
polymer degradation would result in a more accurate hGH diffusion model. 
 
Lastly, we assumed that the hGH diffusion was independent of interaction/diffusion of 
other molecules. In an in vitro system, this assumption might be safe. However, once 
the film is applied to in vivo system, there are countless molecules that hGH could come 
into contact with, possibly hindering its ability to diffuse out of the polymer. These 
interactions are difficult to take into account, since developing a model that took into 
account every interaction would be almost impossible, and not likely very usable. 
However, isolating a few molecules that have significant effect on hGH diffusion via 
interaction with hGH and accounting for their effect could greatly enhance the accuracy 
of our model. These improvements should be looked into for future models in order to 
obtain more accurate mathematical models for drug release. 
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Appendix 
	  

% BENG 221 Group Project 

function project_final 

 

global Co L k Do 

 

Co = 30; %mg/ml 

L = .005; %m 

k = .044; %/day 

Do = 4.32e-08; %m^2/day 

 

tmesh = 0:50/100:50 ; %in day 

xmesh = 0:L/100:L; 

 

 

pdefuns = @pdefun; 

pdefuns2 = @pdefun2; 

ics = @ic; 

bcs = @bc; 

 

sol_pdepe = pdepe(0,pdefuns,ics,bcs,xmesh,tmesh); 

 

figure(1) 

surf(tmesh,xmesh,sol_pdepe'); 

title('PDEPE Solution') 

xlabel('t[day]') 

ylabel('x[m]') 

zlabel('C(x,t)[mg/ml]') 

 

%PDEPE for simple diffusivity constant model 

 

sol_pdepe_2 = pdepe(0,pdefuns2,ics,bcs,xmesh,tmesh); 
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figure(2) 

plot(tmesh,[sol_pdepe(:,51),sol_pdepe_2(:,51)]) 

title('Effects of diffusivity on diffusion process at x = 

2.5um') 

ylabel('C(x,t)[mg/mL]'); 

xlabel('t[day]'); 

legend('biodegradable polymer','non-biodegradable polymer'); 

 

 

% Analytical Solution for biodegradable polymer 

 

% domain 

 

nx = length(xmesh); % number of points in x dimension 

nt = length(tmesh); % number of points in t dimension 

 

u_xt = zeros(nt,nx); 

 

for n = 1:42 

    lam = n*pi/L; 

    An = 2.*Co./(n*pi*(exp(-lam^2.*Do./k))).*(1-cos(n*pi)); 

    u_xt = u_xt + An.*sin(n*pi/L*xmesh)'*exp(-

lam.^2./k.*Do.*exp(k.*tmesh)); 

end 

 

figure(3) 

surf(xmesh,tmesh,u_xt') 

title('Analytical solution with 42 terms') 

xlabel('x[m]') 

ylabel('t[day]') 

zlabel('C(x,t)[mg/mL]') 

 

%Analytical solution for simple diffusivity model 

 

u_x2t = zeros(nt,nx); 
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for n = 1:42 

    lam2 = n*pi/L; 

    Bn = 2.*Co./(n*pi).*(1-cos(n*pi)); 

    u_x2t = u_x2t + Bn.*sin(n*pi/L*xmesh)'*exp(-

lam2.^2.*Do.*tmesh); 

end 

 

figure(4) 

surf(xmesh,tmesh,u_x2t') 

title('Analytical solution of constant diffusivity with 42 

terms') 

xlabel('x[m]') 

ylabel('t[day]') 

zlabel('C(x,t)[mg/mL]') 

 

end 

 

function u0 = ic(x) 

% Initial conditions 

global Co 

 

u0 = Co; 

end 

 

function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 

% Boundary conditions 

 

pl = ul; 

ql = 0; 

pr = ur; % right boundary 

qr = 0; %right flux 

end 

 

function [c, f, s] = pdefun(x, t, u, DuDx) 
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% PDE coefficients 

global Do k 

 

c = 1; 

f = Do .* exp(k.*t) .* DuDx; % diffusion 

s = 0; 

end 

 

function [c, f, s] = pdefun2(x, t, u, DuDx) 

% PDE coefficients 

global Do 

 

c = 1; 

f = Do .* DuDx; % diffusion 

s = 0; 

end 


